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ABSTRACT

Siderophores are low molecular weight metal chelating agents which are produced by plants and 
microorganisms in Fe- limiting conditions. These Siderophores chelate iron and supply to bacterial cell 
by outer membrane receptors. There is a wide variable seen in siderophore nature and functions from 
bacterial species to species. Isolation of siderophore agent can only be obtained under Fe restricted 
media. Siderophore and their derivative have large application in agriculture starting from soil fertility, 
bio control agent, plant growth promoter and also as a bio remediation against heavy metals. There is 
still a lot way further to research its mechanism and mode of function so that to explore its potentiality 
in fields other than agriculture also for plant and human benefits.
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One of the vital elements, Iron (Fe) is critical 
for all living organisms to carry out important 
cellular process viz, electron transport chain and 
simultaneously as a cofactor for many enzymes 
(Litwin and Calderwood, 1993) that facilitates 
various enzymatic process as a catalyst. Fe has also 
a significant role to play in oxygen metabolism 
DNA and RNA synthesis (Aguado- Santacruz et 
al. 2012). Soil microorganisms, specially under 
aerobic environment need Fe for a wide variety of 
functions that includes reduction of oxygen for the 
synthesis of ATP, formation of heme protein etc. 
Fe also helps in bio film formation and controls 
surface motility and stabilize the polysaccharide 
matrix (Weinberg, 2004; Chhibber et al. 2013). Under 
aerobic condition free Fe gets oxidize to insoluble 
oxy hydroxide polymer and reduce the level of 
free Fe which generates gradually Fe limiting 
condition. Thus, microorganism adopts an alternate 
way for Fe acquisition by producing Fe chelating 
molecule i.e. siderophore. Siderophore are low 

molecular weight (< 10 KD) Fe chelating compounds 
synthesized by bacterial population such as 
Pseudomonas, Azotobacter, Bacillus, Enterobacter, 
Serratia, Azospirillum and Rhizobium (Glick et al. 1999; 
Loper et al. 1999). Siderophore combines with free 
Fe and forms complex which transport into the 
cell by the help of membrane receptor molecules, 
these receptor molecules that are encoded by five 
genes in operon gets off when cells gets sufficient 
Fe (Lewin, 1984).
With growing concern about soil health and organic 
agriculture practices, siderophores is getting major 
attention in the fields of application due to its 
immense potential in nutrition and plant health 
and ecofriendly nature. At present nearly 500 
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siderophores are reported from microorganisms 
with great variation in their structure from one 
species to another. Despite of providing nutrition 
to plant and microorganism siderophore also 
contributes in other environmental applications such 
as soil mineral weathering, biogeochemical cycling 
of Fe in oceans and biotechnological applications 
such as enhancing growth and pathogen bio 
control of plants, bio control of fish pathogens, 
microbial ecology and taxonomy, bioremediation of 
environmental pollutants, petroleum hydrocarbons, 
nuclear fuel reprocessing, optical biosensor, bio- 
bleaching of pulp (Ahmed and Holmström,2014).

Classification of siderophores

According to the oxygen ligands for Fe3+ organization, 
siderophores can be differentiated to three main 
categories, namely: hydroxamates, catecholates, and 
carboxylates. Hydroxymate type of siderophore is 
mostly produced by the bacteria and fungi. Most 
hydroxamate groups belong to C (=O) N-(OH) R 
and R is an amino acid. As for example Ferrioxamine 
groups of siderophores that produces by Arthrobacter, 
Chromobacterium and Pseudomonas species of soil 
bacteria. Catecholate is another important group of 
siderophore, mainly produced by the soil bacteria. 
The structure of the backbone can be polyamine, 
a peptide or a macrocyclic lactone. In 1970, their 
isolation was done from culture fluids of E. coli, 
Aerobacter aerogenes, and Salmonella typhimurium 
which further produced enterobactin (also termed 
as enterochelin) and was the first tricatechol 
siderophore. Enterobactin is the most intensively 
analyzed siderophore because of its exceptional 
properties pertinent to its physiological reactions 
as observed. Bacteria like Staphylococci, Rhizobium 
melilot, Mucorals produce such siderophores 
namely Staphyloferrin A & B, rhizobactin and 
rhizoferrin carboxylate siderophore respectively. 
Phytosiderophores are the Fe3+ chelating compounds 
secreted mostly by the which can form specific 
strong complexes with Fe3+. When phytosiderophore 
is released in the rhizosphere region, it chelates 
the iron from the soil by forming a complex of Fe3+ 
which can be directly transported across the root 
plasma membrane (Römheld and Marschner 1986; 
Dell’mour et al. 2012). Several studies also suggested 
that some graminaceous plant like wheat, rye and 
barley have ability to produce a high concentration 

of phytosiderophores that makes them more 
resistant towards Fe deficiency in comparison to 
other plants like maize, rice and sorghum, which 
produce comparatively lower concentration of 
phytosiderophores (Masuda et al. 2009; Kobayashi 
et al. 2010).

Mechanism of siderophore

As siderophore is released from the cell, the 
membrane receptors present in the cell membrane 
protein binds with free Fe and form Fe-siderophore 
complex. This complex is transported into the cell 
via Fec A and Fep A which are an outer membrane 
(OM) receptor. Later, it is transported to ABC-
Transporter systems i.e. Fec C, D, E and Fep C, 
D, E (from ATP binding cassette) which consists 
of two proteins, one acts as permease whereas the 
other protein hydrolyze ATP to give energy for 
transportation (Boos and Eppler, 2001). Finally, 
siderophore Fe complex is released under cytosol by 
membrane protein and finally free iron is separated 
from the complex by hydrolytic destruction of the 
siderophore molecule or cell membrane protein 
or by the reduction of Fe3+ by NADPH linked 
siderophore reductase. The final Fe2+ does not show 
any high affinity towards siderophore and thus get 
easily separated from the siderophore-iron complex 
and siderophores either get degraded or recycled by 
excretion through efflux pump system. Mechanism 
of Siderophore mediates iron transport in bacteria 
presented in Fig. 1.

Fig. 1: Mechanism of Siderophore mediates iron transport in 
bacteria [Source: Ali S, 2013]

Potential role of Siderophores in Agriculture

In agriculture, inoculation of Pseudomonas putida 
with the soil ,  that produces pseudobactin, 
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(siderophore) is found to increase the growth and 
yield of various plants (Kloepper et al. 1980). Plant 
growth promoting activities of siderophore includes 
production of HCN protease, antimicrobials, 
phosphate solubilizing enzymes (Chaiharn et al. 
2008) etc. Hydroxamate type siderophore present in 
soil plays an important role to immobilize the metals 
and prevents in their accumulation in agricultural 
soils. The effect of siderophore-producing PGPR 
is also reported recently (Ferreira et al. 2019). 
Siderophore producing bacteria Pseudomonas putida 
was found to increase the tuber yield in potato in a 
short rotation (Bakker et al. 1985). Another study by 
Gamit, D et al. (2014) showed that siderophores from 
P. pseudoalcaligen increased the seed germination and 
plant growth of pigeon pea crop and also positively 
affect the yield. In calcareous soils, Fe chelated 
and Fe siderophore fertilization is also reported to 
increase the yields, crop growth and Fe uptake of 
cumin crop (Tortora, M et al. 2011).

Siderophore as a Biocontrol agent

Many bacteria suppress the growth of disease 
causing pathogens by production of siderophore, 
antibiotics, and cyanide (Edi Husane, 2005). 
Siderophores acts as a growth inhibitor of various 
phytopathogenic fungi, such as Phytophthora 
parasitica (Seuk et al. 1988), Phythium ultimum 
(Hamdan et al. 1991), Fusarium oxysporum veri dianthi 
(Buysens et al. 1996) and Sclerotinia sclerotiorum (Mc 
Loughlin et al. 1992). Kloepper et al. (1980) was 
first to demonstrate the importance of siderophore 
production as a biological control against Erwinia 
carotovora by several strains of Pseudomonas 
fluorescens. A direct correlation was also set through 
in vitro experiment between siderophore synthesis 
in fluorescent pseudomonads and discovered their 
ability to inhibit germination of chlamydospores 
which prevent F. oxysporum to cause destructive wilt 
of plants (Elad and Baker, 1985; Sneh et al. 1984).

Environmental applications of Siderophore

The most common heavy metal contaminants found 
in soil and aquatic system are cadmium (Cd), 
chromium (Cr), copper (Cu), Mercury (Hg), lead 
(Pb) and Nickel (Ni). Metals are natural components 
in soil with a number of heavy metals being required 
by plants as micronutrients. Siderophores and other 
naturally occurring ligands affects actinide mobility 

in waste repositories and in the environment and 
may also used to treat radioactive waste prior 
to storage or to decontaminate soils and water 
(Ruggiero et al. 2000; Von Gunten and Benes, 1995).

Siderophore as a Plant Growth Promoter

From past few decades, different species of 
Pseudomonasc has been reported to enhance plant 
growth by producing pyoverdine siderophores 
(Kloepper et al. 1980; Gamalero and Glick 2011). 
Mahmoud and Abd-Alla (2001) also observed 
that siderophores (hydroxymate type) producing 
Pseudomonas sp. improves the nodulation and N2 
nitrogen fixation of mung bean plant in comparison 
to Bradyrhizobium strain alone. In addition to 
pseudomonads, other bacteria under rhizosphere 
region of plant Azadirachta indica had reported to 
produce ferrioxamines siderophore that transfers 
the Fe to the plant and helps in growth and 
development of shoot and root (Verma et al. 2011; 
Crowley 2006). Powell et al. (1980) found in his 
study that hydroxamate siderophores exists in 
different soils as well as in the aquatic environments 
also. It has been established that hydroxamate type 
of siderophore present in soil play an important 
role to immobilize the heavy metals which is 
very toxic to most of the plant and soil health 
status. Other bacterias like Escherichia coli from rye 
grass (Loliumperenne sp.) and endo-rhizosphere 
of sugarcane (Saccharum sp.) and an endophytic 
Streptomyces sp. isolated from the roots of a Thai 
jasmine rice plant enhanced plant growth and 
significantly elevated root and shoot biomass and 
lengths (Gangwar and Kaur 2009; Rungin et al. 
2012).

Siderophore as a Bioremediator

Siderophores also have a significant role to play 
in chelation of various heavy toxic metals e.g., 
chromium (Cr3+), aluminium (Al3), copper (Cu2+), 
europium (Eu3+) and lead (Pb2+) (Nair et al. 2007; 
Rajkumar et al. 2010; O’Brien et al. 2014). Depending 
upon the concentration of metals in the growth 
medium, siderophore production can be regulated 
(Schalk et al. 2011; Braud et al. 2010). For example, 
in presence of Cr2+, Al3+, Cu2+, Ni2+ and Mn2+ 
pyoverdine (siderophore) production was found to 
raise in P. aeruginosa (Braud et al. 2009), azotochelin 
biosynthesis was raised by molybdenum (Mo) in 
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Azotobacter vinelandii (Duhme et al. 1998), N-di-
oxyschizokinen production was enhanced by the 
presence of Al in B. Megaterium (Hu and Boyer 
1996). Therefore, siderophores is considered as an 
agriculturally important tool for bio remediation of 
heavy metals (Rajkumar et al. 2010). Siderophores 
such as azotochelin and azotobactin which are 
produced by Azotobacter vinelandiican found very 
useful for controlling Mo (molybdenum) and 
V (vanadium) acquisition (Wichard et al. 2009); 
Studies reported that P. fluorescens have observed 
to mobilize the metals like Ni2+ (Nickel) and Co2+ 
(Copper) from mining waste material (Edberg et al. 
2010). Besides, It is already proved that siderophores 
produced by Agrobacterium radiobacter can eradicate 
approximately 54% pollutant soil contaminated with 
heavy metals where pyoverdine siderophore has 
ability to mobilize uranium (U6+), neptunium (Np5+) 
& other metals from uranium mine waste (Behrends 
et al. 2012; Wang et al. 2011).

CONCLUSION
In a view of focus, sustainable agriculture and 
resource conserving technologies, organic farming, 
microbial diversity and soil health has gained 
considerable attention in recent years. Siderophore 
thus has a huge potential to be explored in agriculture 
scenario. In most agricultural land, especially under 
aerated soil condition and neutral to alkaline pH 
soil, deficiency of inorganic Fe is widely found as 
it is insoluble and their concentration is found less 
than optimal for bacterial growth to acquire Fe 
bacterial cell produce siderophore. Thus, there can 
be enormous scope for the application of microbial 
siderophores in the field of Agriculture to improve 
growth and productivity of plant. Further research 
should be carried out to exploit its beneficial role 
under extremophiles conditions like deep sea, desert 
and forest for welfare of all living beings as well as 
for the environment.
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