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ABSTRACT

Although visible near infrared diffuse reflectance spectroscopy (VisNIR DRS) is an emerging, rapid, 
non-destructive, and cost effective technology to predict a host of soil biological parameters, the 
traditional chemometric partial least squares regression (PLS) model often poses challenges during sensor 
development. In an effort to identify alternatives to the PLS model, three multivariate machine learning 
algorithms [PLS, penalized spline regression (PSR), and random forest (RF) regression]in conjunction 
with two spectral preprocessing methods [Savitzky–Golay first derivative and absorbance (ABS)] were 
compared with respect to 12 soil biological parameters of 123 soil samples. The RF model with ABS spectra 
successfully predicted all biological parameters with residual prediction deviation (RPD) ranging from 
2.60 to 3.60 and outperformed PSR and PLS models. The best PSR model was obtained for total bacteria 
with an RPD of 2.70 and an r2 of 0.86 and among other variables, only Gram positive bacteria (RPD=2.63, 
r2=0.85), Gram negative bacteria (RPD=2.58, r2=0.85), and SOM (RPD=2.67, r2=0.86) were satisfactorily 
predicted, exhibiting r2>0.80 and RPD>2.5. Conversely, all variables except SOM (RPD=2.07) were poorly 
predicted by PLS models which had an RPD<2. Furthermore, linear discriminant analysis qualitatively 
clustered soils with different levels of microbial parameters. Summarily, the RF model with ABS spectra 
showed great promise in characterizing soil microbial communities with potential for such analysis in-situ.

Keywords: Microbial community, Linear discriminant analysis, Partial least squares, Penalized spline, 
Random forest, Visible near infrared diffuse reflectance spectroscopy

Soil biological processes have many profound 
implications on soil health. Soil is a complex and 
dynamic ecosystem that is home to abundant 
and diverse microbial communities, with billions 
of microorganisms inhabiting one gram of soil 
(Coleman and Whitman, 2005; Curtis and Sloan, 
2005). In soil ecosystems, microorganisms play an 
important role in various functions such as: nutrient 
cycling, structural formation, regulation of soil 
organic matter (SOM) dynamics, C sequestration, 
and enhancement of plant growth (Millard and 
Singh, 2010). Given the complexity of these 
populations, a number of standard laboratory 

procedures are used to identify and quantify 
them. One approach, fatty acid profiling, involves 
extraction of signature lipids, present within the 
microbial cells, which are used to identify different 
taxonomical groups (Zelles et al. 1995). Two of the 
most common approaches to profile soil microbial 
fatty acids are the phospholipid fatty acid (PLFA) 
method and the ester-linked fatty acid methyl ester 
(EL-FAME) method (White et al. 1996; Zelles, 1999). 
Each method has advantages and disadvantages as 
have been reviewed and evaluated by Zelles (1999), 
Schutter and Dick (2000), Drenovsky et al. (2004), 
and Fernandes et al. (2013).
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Visible near-infrared diffuse reflectance spectroscopy 
(VisNIR DRS) is a reliable, rapid, field-portable, 
non-destructive, and cost effective technique used 
for characterization of several soil properties (Ben-
Dor and Banin, 1995; Reeves et al. 2000; Islam et al. 
2003; Brown et al. 2006; Viscarra Rossel et al. 2006; 
Morgan et al. 2009; Vasques et al. 2009). Recently, soil 
microbiological parameters like microbial biomass 
carbon (MBC), basal respiration, mineralizable C 
and N have been rapidly estimated via infrared 
spectroscopy and frequently used as indicators of 
SOM quality (Pietkainen and Fritze, 1995; Chodak 
et al. 2002; Ludwig et al. 2002; Couteaux et al. 2003; 
Rinnan and Rinnan, 2007; Cecillon et al. 2008; 
Zornoza et al. 2008). When used in combination 
with reference estimation methods and multivariate 
algorithms, VisNIR DRS becomesa robust method 
for quantifying many soil properties (Viscarra Rossel 
et al. 2006). While overtones of OH−, SO4

2−, and CO3
2− 

groups and combination bands of H2O and CO2 
are responsible for unique spectral signatures of 
common clay minerals; O–H, C–N, N–H, and C=O 
groups are active bonds for soil organic matter in 
the NIR region (Hunt and Salisbury, 1970; Malley 
et al. 2002).
The operational theory of Vis NIR DRS utilizes 
a halogen light source to project light onto a soil 
sample. Simultaneously, some of that emitted light 
is reflected back and captured by the spectrometer 
probe, where the reflectance values are precisely 
recorded for analyses as a function of wavelength, 
especially in the visible and near infrared range 
(350-2500 nm). Different soil attributes such as 
moisture (Zhu et al. 2010), carbon, or microbial 
populations cause a spectral absorbance at different, 
unique wavelengths (Chang et al. 2001). The 
collected spectra are then subjected to a number of 
preprocessing methods and statistical calibration-
validation approaches to associate parsed spectra 
with the soil parameter of interest. Spectral 
preprocessing typically involves transformation 
of raw reflectance spectra such as averaging of 
replicate scans followed by producing 1st and 
2nd derivatives of reflectance spectra on desired 
intervals or discreet wavelet transformation (DWT).
In the calibration stage, a subset of samples are 
used to develop regression models; while in the 
validation stage the remaining samples are used 
to evaluate the validity of regression models for 

estimating constituent concentrations. Calibration 
models traditionally involve partial least squares 
(PLS) regression, principal component regression, 
or stepwise multiple linear regression. Recently, 
researchers have used clustering techniques such as 
linear discriminant analysis (LDA), random forest 
(RF) classification, and support vector machines 
for qualitative discrimination of VisNIR spectra 
of diverse soil samples (Chakraborty et al. 2010; 
Chakraborty et al. 2012).
Of interest to this study is the calibration stage. 
Although principal component regression and 
PLS efficiently decrease the dimensionality of 
spectroscopic data and the transformed new 
variables (i.e., principal component and PLS latent 
factor) are de-correlated, these variables are hard to 
relate to the original spectral absorptions, and thus 
these techniques may not be appropriate for sensor 
development (Ge et al. 2007). More robust, state-
of-the-art statistical techniques like random forest 
regression (RF)and penalized spline regression 
(PSR) remain essentially untested with regard to 
soil microbial populations and other biological 
properties. RF represents a highly advanced data 
mining technology which combines information 
from a number of decision trees (Breiman, 2001).
If advanced statistical approaches can render 
alternative predictive models of soil biological 
parameters, they can be applied to prescreen large 
sample sets to identify those samples deserving of 
additional laboratory analysis or to make rapid, on-
site evaluations of microbial populations as a primer 
of optimized soil health. The objectives of this study 
were to i)test if two machine learning algorithms 
(RF and PSR) can improve PLS predictive models 
of broad taxonomic microbial groups based on 
FAME profiles and MBC measurements and ii) 
test if LDA can be used for qualitative VisNIR 
discrimination of the soils with different levels of 
microbial parameters.

MATERIALS AND METHODS

Soil Sampling

Soil samples for this study were collected as part 
of an on-going study to examine soil microbial 
dynamics in relation to biogeochemical cycling 
and C sequestration in fields under Conservation 
Reserve Program (CRP) contracts and dryland 
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annual cropping systems (typical crop is Gossypium 
hirsutum L., cotton). Fields were located across seven 
counties in the semi-arid Southern High Plains of 
Texas (Fig. 1), with average annual temperature of 
16.0°C and annual precipitation of 480 mm. A total 
of 19 CRP grasslands, seven long-term dryland 
cropping systems, three dryland cropping systems 
that had previously been under CRP contract, and 
three native rangelands were sampled in July 2012, 
June 2013, or November 2013 based upon prior 
study objectives. Soil samples were of the Amarillo 
series (Fine-loamy, mixed, superactive, thermic 
Aridic Paleustalfs) or Patricia series (Fine-loamy, 
mixed, superactive, thermic Aridic Paleustalfs) (Soil 
Survey Staff, 2012). Amarillo is a benchmark soil of 
this region commonly characterized by fine sandy 
loam in the upper 30 cm.
A total of 123 soil samples were utilized in this 
study. In July 2012, 46 samples were collected from 
16CRPfields (32 samples) and seven croplands 
(14 samples). Half of the samples from each 
management were collected from 0-10cm and the 
other half from 10-30cm depth. In June 2013, six 
samples (three from 0-10cm and three from 10-
30cm) were collected from native rangelands. In 
November 2013, 36 samples were collected from 
three long-term CRP fields and 35 were collected 
from recently converted CRP fields. At each 
long-term or converted CRP field samples were 
collected using a hydraulic probe (Giddings Mfg., 
Colorado, USA) to a depth of 100 cm. Samples 
were separated into depths of 0-10, 10-30, 30-50, 
and 50-100 cm and thoroughly homogenized. A 
total of three homogenized samples per depth per 
field were collected. All samples were stored on 
ice in the field and transported the same day to 
the Texas Tech University Soil and Environmental 
Microbiology laboratory in sealed plastic bags. Soils 
were disaggregated to pass through a 4.75 mm sieve 
and field-moist samples were further analyzed for 
microbial communities (via FAME profiling) and 
MBC and microbial biomass N (MBN) within three 
days of sample collection.

Biological analysis

In this study, AR grade (Sigma) chemicals were 
used without further purification. All solutions 
were prepared with MilliQTM (18.2 MΩ) water. Soil 
microbial communities were characterized using 

direct extraction of microbial fatty acids according to 
the ester-linked fatty acid methyl ester (EL-FAMEs) 
method described by Schutter and Dick (2000) using 
3g of field-moist equivalent soil. Briefly, lipids from 
the microbial cells were extracted by saponification 
at 37°C under alkaline conditions. The fatty acids 
were then methylated to form FAMEs which were 
further separated in an organic solvent. Upon 
addition of Methyl tert-butyl ether and Hexane 
(1:1) containing Methylnonadecanoate (19:0) as an 
internal standard, samples were quantified using 
a 6890 GC series II (Hewlett Packard, Wilmington, 
DE). The temperature program in the GC was 
ramped from 170°C to 250°C at 50°C min-1, then 
to 300°C for 2 min to clear the column between 
samples(Acosta Martinez et al. 2004). The fatty acids 
were identified by comparison of retention times and 
peak areas with automated MIDI peak identification 
software (Microbial ID, Inc., Newark, DE). Total and 
individual FAME concentrations (nmolFAME-C g−1 
soil) were calculated by comparing peak areas to 
an analytical standard (19: 0, Sigma Chemical Co., 
St. Louis, MO) calibration curve. The microbial 
communities were characterized into: Gram positive 
bacteria (GM+), Gram negative bacteria (GM-), 
actinomycetes, arbuscularmycorrhizal fungi (AMF), 
and saprophytic fungi using indicator fatty acids 
(Table 1). FAMEs produced were described using 
standard nomenclature: total number of carbon 
atoms, total number of double bonds followed by 
colon and position of double bonds from the methyl 
end of the group. The total bacterial biomass was 
calculated by adding GM+, GM-, and actinomycetes 
biomarkers while fungal biomass was calculated by 
adding saprophytic fungi biomarkers. The fungi 
to bacteria ratio was calculated by relating the 
18:2ω6,9c biomarker with total bacteria.
Soil MBC and MBN were quantified by the 
chloroform fumigation extraction technique (Vance 
et al. 1987) using 15g oven dry equivalent field moist 
soil. Fumigated (24 h) and non-fumigated (control) 
samples were extracted with 0.5 M K2SO4 and 
filtered through Whatman No. 42 filter paper. The 
total organic C and N in the filtrate were analyzed 
with a TOC/TN analyzer (Shimadzu Model TOCV/
CPH-TN, Japan). The MBCand MBN were calculated 
by subtracting non-fumigated sample values from 
fumigated samples considering kEC=0.45 for C (Wu 
et al. 1990) and kEN=0.54 for N (Jenkinson, 1988) as 
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constants. SOM was estimated via loss-on-ignition 
method (Nelsonand Sommers, 1996). Samples were 
dried overnight (~15 hours) at 105°C before being 
placed in the muffle furnace at 400°C for 8 hours.

VisNIR scanning and spectral pretreatments

Field-moist samples were scanned using a PSR-
3500® portable VisNIR spectroradiometer (Spectral 
Evolution, Lawrence, MA, USA) with a spectral 
range of 350 to 2500 nm. The spectroradiometer had 
a 2nm sampling interval and a spectral resolution of 
3.5, 10, and 7nm from 350 to 1000 nm, 1500 nm, and 
2100 nm, respectively. Scanning was facilitated with 
a contact probe featuring a 5W built-in light source. 
Samples were brought to room temperature, evenly 
distributed in an opaque polypropylene sample 
holder and scanned from the top with the contact 
probe connected to the PSR-3500® with a metal-clad 
fiber optic cable. Full contact with the sample was 
ensured to avoid outside interference. Quadruplet 
scans were taken per sample with a 90° rotation 
between scans to obtain an average spectral curve. 
Each individual scan was an average of 10 internal 
scans over a time of 1.5 seconds. The detector was 
white referenced (after each sample) using a 12.7cm 
× 12.7cm NIST traceable radiance calibration panel, 
ensuring that fluctuating down-welling irradiance 
would not saturate the detector.
Raw reflectance spectra were processed via a 
statistical analysis software package, R version 2.11.0 
(R Development Core Team, 2008) using custom “R” 
routines (Chakraborty et al. 2013). These routines 
involved (i) a parabolic splice to correct for “gaps” 
between detectors, (ii) averaging replicate spectra, 
and (iii) fitting a weighted (inverse measurement 
variance) smoothing spline to each spectra with 
direct extraction of smoothed reflectance at 10nm 
intervals.
This study used two spectral pretreatments to 
prepare the smoothed soil spectra for analysis, and 
three multivariate algorithms to develop the VisNIR 
predictive models. Spectral pretreatments reduce the 
influence of the side information contained in the 
spectra. The pretreatment transformations applied 
were Savitzky–Golay (SG) first derivative using a 
first-order polynomial across a ten band window, 
and optical density or absorbance (ABS) [log (1/
reflectance)]. Both pretreatment transformations 
were implemented in the Unscrambler®X 10.3 

software (CAMO Software Inc., Woodbridge, NJ). 
Subsequently, both SG and ABS spectra were 
included as candidate explanatory variables for 
biological parameters in following VisNIR models.

Machine learning

For each spectral pretreatment, three multivariate 
methods were tested including PLS, penalized spline 
regression (PSR), and random forest regression 
(RF) (Halaand and Thomas, 1988; Breiman, 2001).
Samples with missing values were removed a priori 
before modeling. The whole dataset was used with 
leave-one-out-cross validation (LOOCV) to prevent 
over-fitting and evaluation of model generalizing 
capability. When using small data sets (40–120 
samples) in quantitative multivariate modeling, 
LOOCV provides the best estimate of the predictive 
performance of an obtained model (Martens and 
Dardenne, 1998). For PSR, the cubic B-spline was 
used via R version 2.14.1 (R Development Core 
Team, 2008) as the base function with100 equally 
spaced knots. The order of the penalty was set 
to the default value of three. The optimal value 
for the penalty-tuning parameter was selected by 
minimizing the LOOCV error on the training set. 
Moreover, the ‘Random Forest’ package was used in 
R to build the RF model. The number of trees in RF 
was set to the default value of 500. The coefficient 
of determination (r2), cross-validation root mean 
squared error (RMSEcv), residual prediction 
deviation(RPD), and bias were used as rubrics 
for judging model predictability. Subsequently, 
both aforementioned models were compared 
with PLS to test whether PSR or RF can improve 
DRS predictability. The optimum number of PLS 
latent factors (rotations of principal components 
for a slightly different optimization criterion) was 
selected on the basis of the number of factors with 
the smallest total residual validation Y-variance 
or highest total explained validation Y-variance 
(CAMO Software Inc., Woodbridge, NJ). Since RPD 
is the ratio of standard deviation (SD) and RMSE, 
model generalization capacity increases when 
validation set SD highly surpasses the RMSE.
Finally, the Fisher’s LDA approach was applied 
with best performing spectral transformation for 
dimensionality reduction and qualitative VisNIR 
discrimination of the soils with different levels 
of microbial parameters. Each biological property 
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was transformed a priori into discrete classes [1st 
quartile (Q1), 2nd quartile (Q2), 3rd Quartile (Q3), 
and 4th quartile (Q4)] for classification purposes. 
Furthermore, to evaluate classification results, 
kappa (κ) coefficients were computed (Thompson 
and Walter, 1988).

RESULTS AND DISCUSSION
The summary statistics of all measured soil 
biological properties are provided in Table 2. Soil 
samples varied widely in their biological properties, 
likely a result of differences in land use, vegetation 
cover, and sampling depth. Compared to other 
properties, SOM (6-fold), saprophytic fungi (9-fold), 
and fungi: bacteria (18-fold) exhibited lower ranges 
of variation (Table 2). The ranges of variation of 
other properties were markedly larger [58 (MBC) to 
408-fold (AMF)]. Not shown, the MBC: SOC ratio 
varied from 0.001 to 0.067 with a mean of 0.016. 
Except for saprophytic fungi, fungi: bacteria, and 
MBC, all other variables were significantly (p<0.05) 
correlated with each other (Table 3). The ratio of 
fungi: bacteria varied greatly (0.22-3.99) and was 
not correlated with SOM.

Machine learning

Since, ABS spectra exhibited higher RPD than SG 
spectra for most of the response variables, and 
because in the ABS spectra the intensities are 
linearly linked to the concentrations of interest 
(Bellon-Maurel and McBrateney, 2011), the modeling 
results reported here all usethe ABS spectra 
between 350 and 2500nm (Table 4). Among the 
three multivariate algorithms tested (PSR, PLS, 
and RF), all biological parameters were estimated 
with greatest accuracy by RF. Lab-measured versus 
RF predicted models for all parameters showed 
close out-of-bag prediction r2 (similar to LOOCV 
prediction on each of the training points), ranging 

from 0.85 to 0.92. In general, PSR models for all 
response variables showed underestimation at 
higher values and overestimation at lower values 
(Fig. 2). Exhibiting a similar trend and deviation 
from the 1:1 line, the prediction decreased further 
for PLS models (Fig. 3). Conversely, RF models 
closely approximated the 1:1 line and improved 
prediction accuracy (Fig. 4).
Notably, Chang et al. (2001) categorized the 
accuracy and stability of their spectroscopy models 
based on the RPD values of the validation set. An 
RPD >2.0 was considered a stable and accurate 
predictive model; an RPD value between 1.4 and 
2.0 indicated a fair model that could be improved 
by more accurate predictive techniques; an RPD 
value <1.4 indicated poor predictive capacity. In 
this study, RF models successfully predicted all 
biological parameters with RPDs ranging from 
2.60 (saprophytic fungi) to 3.60 (SOM), exceeding 
the respective RPDs produced by both PSR and 
PLS counterparts (Table 4). Applying an even more 
stringent model evaluation rubric of Sayes et al. 
(2005), excellent predictions were obtained for SOM 
(RPD=3.60, r2=0.92), GM+ (RPD=3.27, r2=0.91), total 
FAMEs (RPD=3.21, r2=0.90), total bacteria (RPD=3.22, 
r2=0.90), actinomycetes (RPD=3.18, r2=0.90), and 
GM-(RPD=3.10, r2=0.90). Moreover, RF models for 
total fungi and fungi: bacteria exhibited very high 
prediction scores with RPD values of 3.03 and 3.06, 
respectively, and an r2 of 0.89, which was slightly 
less than the prescribed cutoff r2 of 0.9 (Sayes et 
al. 2005; Zornoza et al. 2008). RF models for AMF, 
saprophytic fungi, MBC, and MBN were accurate 
with r2>0.80 and RPD>2.5. In contrast, PSR models 
produced intermediate generalization capabilities. 
The best PSR model was obtained for total bacteria 
with an RPD of 2.70 and an r2 of 0.86 and among 
other variables, only GM+(RPD=2.63, r2=0.85), GM-
(RPD=2.58, r2=0.85), and SOM (RPD=2.67, r2=0.86) 

Table 1: Indicator fatty acids used to evaluate microbial groups

Microbial group Indicator fatty acids
Saprophytic fungi 18:3ω6c (6,9,12), 18:1ω9c, 18:2ω6,9c
AMFa 16:1ω5c
GM+b 14:0 iso, 15:0 iso, 15:0 anteiso, 16:0 iso, 17:0 iso, 17:0 anteiso
GM-c 17:0 cyclo, 19:0 cyclo ω8c, 18:1ω7c / 18:1ω6c
Actinomycetes 18:0 10-methyl, 17:0 10-methyl, 16:0 10-methyl / 17:1 iso ω9c

aAMF, arbuscular mycorrhizal fungi; bGM+, Gram positive bacteria; cGM-, Gram negative bacteria.
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Fig. 1: Soil sampling location in Texas, USA. A total of 123 soil samples were collected and used in regression analysis. Field types 
are Conservation Reserve Program (CRP1, CRP2), cotton (CTN), natural rangeland (NAR), and other croplands (CROP)
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Fig. 2: Lab-measured vs. visible near infrared diffuse reflectance spectroscopy (VisNIR-DRS) penalized spline regression (PSR) 
predicted soil biological parameters using absorbance spectra. The dashed line is the regression line, and the solid line is a 1:1 line. All 
y-axes represent predicted values. Residual prediction deviation (RPD) is the ratio of standard deviation and root mean squared error. 
Plot abbreviations are as follows: soil organic matter (SOM), Gram positive bacteria (GM+), Gram negative bacteria (GM-), fatty acid 
methyl ester (FAME), arbuscularmycorrhizal fungi (AMF), microbial biomass carbon (MBC), microbial biomass nitrogen (MBN)
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were satisfactorily predicted, exhibiting r2>0.80 
and RPD>2.5. Conversely, all variables except SOM 
(RPD=2.07) were poorly predicted by PLS models 
which had an RPD<2. Bias made a negligible 
contribution to the overall lack of cross-validation 
fit (<10% of MSE) for all models tested. The number 
of PLS latent factors (components) used to explain 

the prediction models were identical (10) for total 
FAME, GM+, GM-, actinomycetes, total bacteria, 
total fungi, and SOM. The ratio of RF: PLS and 
RF:PSR model results revealed some interesting 
trends, where the RF-MBC model substantially 
raised r2 (417%) relative to the PLS-MBC model. 
Furthermore, RF-AMF produced roughly doubled 
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Fig. 3: Lab-measured vs. visible near infrared diffuse reflectance spectroscopy (VisNIR-DRS) partial least squares regression (PLS) 
predicted soil biological parameters using absorbancespectra. The dashed line is the regression line, and the solid line is a 1:1 line. All 
y-axes represent predicted values. Residual prediction deviation (RPD) is the ratio of standard deviation and root mean squared error. 
Plot abbreviations are as follows: soil organic matter (SOM), Gram positive bacteria (GM+), Gram negative bacteria (GM-), fatty acid 
methyl ester (FAME), arbuscularmycorrhizal fungi (AMF), microbial biomass carbon (MBC), microbial biomass nitrogen (MBN)
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Table 2:  Summary statistics of soil (n=123) parameters used in the study

Property Minimum Maximum 1st Quartile Median 3rd Quartile Mean Variance 
(n-1)

Standard 
deviation (n-1)

Total FAME (nmol g-1) 2.55 199.25 19.76 35.53 73.42 51.83 1990.53 44.62
GM+ (nmol g-1)a 0.25 29.76 2.36 4.12 7.18 5.87 27.22 5.22
GM-(nmol g-1) b 0.32 21.30 1.57 3.18 6.59 5.11 23.72 4.87
Actinomycetes 

(nmolg-1) 0.18 15.22 1.51 2.56 4.33 3.47 9.08 3.01

Total bacteria (nmol g-1) 0.82 62.02 5.45 10.04 18.52 14.35 163.98 12.81
Total fungi (nmol g-1) 0.43 52.06 4.09 9.21 16.42 11.85 98.25 9.91

AMF (nmol g-1) c 0.09 36.72 1.23 3.42 7.16 6.03 54.29 7.37
Saprophytic fungi 0.06 0.54 0.13 0.19 0.25 0.20 0.01 0.09

Fungi: Bacteria 0.22 3.99 0.49 0.76 1.11 0.99 0.51 0.71
MBC (mg kg-1) d 5.67 330.26 49.32 91.65 151.10 106.33 5405.59 73.52
MBN (mg kg-1) e 0.09 30.62 3.24 5.39 9.08 7.33 42.17 6.49

Soil organic matter (%) 0.38 2.31 1.00 1.25 1.52 1.25 0.14 0.38
aGM+, Gram positive bacteria; bGM-, Gram negative bacteria; cAMF, Arbuscular mycorrhizal fungi; dMBC, Microbial biomass C; eMBN, 
Microbial biomass N.
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Figure Number: Fig. 4 

Measured GM+ (nmol g-1) 

RPD=3.21 RPD=3.27 RPD=3.10 

RPD=3.18 RPD=3.22 RPD=3.03 

RPD=2.67 RPD=2.60 RPD=3.06 

RPD=2.96 RPD=2.72 RPD=3.60 

Fig. 4: Lab-measured vs. visible near infrared diffuse reflectance spectroscopy (VisNIR-DRS) random forest regression (RF) predicted 
soil biological parameters using absorbance spectra. The dashed line is the regression line, and the solid line is a 1:1 line. All y-axes 
represent predicted values. Residual prediction deviation (RPD) is the ratio of standard deviation and root mean squared error. Plot 
abbreviations are as follows: soil organic matter (SOM), Gram positive bacteria (GM+), Gram negative bacteria (GM-), fatty acid 
methyl ester (FAME), arbuscularmycorrhizal fungi (AMF), microbial biomass carbon (MBC), microbial biomass nitrogen (MBN)
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the coefficient of determination (95% increment) 
while halving the RMSEcv (2.75nmol g-1) relative 
to the PLS-AMF model (5.48 nmol g-1). Among 
other variables, the RF model for saprophytic 
fungi produced 325% and 123% greater r2 values 
and 132% and 103% greater RPDs from PLS and 
PSR counterparts, respectively. These increments 
were accompanied with a 67% and 72% decrease 
in RMSEcv for PSR and PLS, respectively.

Qualitative spectral analysis

The average absorbance spectrum across a 10-
band window of one randomly selected sample 
was characterized by high absorbance values in 
the visible range (Fig. 5a), indicating the VisNIR 
sensitivity to soil color. The shape of the spectrum 
resembles that of the NIR absorbance spectra 

reported by Rinnan and Rinnan (2007) except with 
an almost muted 1450 nm peak and two slight 
but prominent positive peaks at ~1700 (aromatics, 
2υ1)nm and ~2000 nm (amides, 3υ1) (where, υi= 
fundamental mode). The dip near 1940 nm in the 
spectra could also be suggestive of water (3υ1)or 
amide N-H.
Given that PLS loading weight vectors can be 
interpreted as correlations between the variables 
(wavelength) and the components of interest (soil 
biological parameter),we plotted the first two 
loading weight vectors to qualitatively characterize 
ABS spectra (Fig. 5b) (Chakraborty et al. 2013).
Haaland and Thomas (1988) revealed that the 
first loading weight vector indicates a first-order 
approximation to the “pure” component spectrum 
and can be useful for making assignments of 

 

Figure Number: Fig. 5 

 

 

Wavelength (nm) 

Wavelength (nm) 

PL
S 

lo
ad

in
g 

A
bs

or
ba

nc
e 

Fig. 5: Plots showing a) the average absorbance spectrum across a 10-band window of one randomly selected sample, and b) the first 
twopartial least squares (PLS) factor loading weight vectors (i and ii) centered on zero
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spectral bands that may be important in the 
analysis. Accordingly,the positive and negative 
peaks are associated with the component of interest 
and interfering components, respectively (Viscarra 
Rossel et al. 2006). The first-factor loading weights 

showed a positive contribution for the whole VisNIR 
range with minor interfering positive peaking to 
varying magnitudes at ~2300 to 2400 nm which 
could arise from methyles (3υ1) and carbohydrates 
(4υ1) (Viscarra Rossel and Beherens, 2010). The 

Table 4:  Summary model statistics obtained for soil biological parameters by three different multivariate methods 
using absorbance spectra. Also ratio of random forest (RF) results with penalized spline regression (PSR) and partial 
least squares (PLS) regression results are shown. For example, a value of 1.11 for PSR means the r2 of RF is about 
11% higher than PSR

Propertya Modelb LFc r2 RMSEcvd RPDe Bias r2 RMSEcv RPD
Leave-one-out-cross validation Ratio with RF results

Total FAME (nmol g-1) PSR — 0.81 19.20 2.32 -6.62×10-12 1.11 0.72 1.38
RF — 0.90 13.88 3.21 0.541 1.00 1.00 1.00

PLS 10 0.71 23.87 1.86 8.79×10-13 1.26 0.58 1.72
GM+ (nmol g-1) PSR — 0.85 2.49 2.63 2.81×10-13 1.07 0.80 1.24

RF — 0.91 2.00 3.27 0.06 1.00 1.00 1.00
PLS 10 0.72 3.45 1.89 9.32×10-15 1.26 0.57 1.73

GM-(nmol g-1) PSR — 0.85 1.88 2.58 -4.06×10-13 1.05 0.83 1.20
RF — 0.90 1.57 3.10 0.037 1.00 1.00 1.00

PLS 10 0.74 2.47 1.96 2.81×10-13 1.21 0.63 1.58
Actinomycetes (nmol g-1) PSR — 0.83 1.25 2.42 4.14×10-13 1.08 0.75 1.31

RF — 0.90 0.94 3.18 0.012 1.00 1.00 1.00
PLS 10 0.68 1.62 1.69 9.24×10-15 1.32 0.58 1.88

Total bacteria (nmol g-1) PSR — 0.86 5.26 2.70 -3.34×10-13 1.04 0.84 1.19
RF — 0.90 4.44 3.22 0.088 1.00 1.00 1.00

PLS 10 0.73 7.33 1.93 -8.79×10-14 1.23 0.60 1.66
Total fungi (nmol g-1) PSR — 0.72 5.24 1.89 8.31×10-13 1.23 0.63 1.60

RF — 0.89 3.32 3.03 0.120 1.00 1.00 1.00
PLS 10 0.65 5.86 1.69 1.88×10-13 1.36 0.56 1.79

AMF (nmol g-1) PSR — 0.67 4.22 1.74 4.16×10-13 1.26 0.65 1.53
RF — 0.86 2.75 2.67 0.125 1.00 1.00 1.00

PLS 4 0.44 5.48 1.34 -2.32×10-14 1.95 0.50 1.99
Saprophytic fungi PSR — 0.38 0.06 1.28 3.28×10-15 2.23 0.33 2.03

RF — 0.85 0.02 2.60 0.001 1.00 1.00 1.00
PLS 6 0.20 0.07 1.12 -2.71×10-16 4.25 0.28 2.32

Fungi: Bacteria PSR — 0.68 0.34 1.78 4.06×10-14 1.30 0.58 1.71
RF — 0.89 0.20 3.06 0.004 1.00 1.00 1.00

PLS 9 0.59 0.39 1.56 8.78×10-15 1.50 0.51 1.96
MBC (mg kg-1) PSR — 0.22 64.87 1.13 -2.04×10-12 4.00 0.38 2.61

RF — 0.88 25.01 2.96 1.02 1.00 1.00 1.00
PLS 7 0.17 66.93 1.10 -1.88×10-12 5.17 0.37 2.69

MBN (mg kg-1) PSR — 0.62 3.91 1.64 -4.10×10-14 1.38 0.60 1.65
RF — 0.86 2.35 2.72 0.123 1.00 1.00 1.00

PLS 7 0.52 4.40 1.45 1.10×10-13 1.65 0.53 1.87
Soil organic matter (%) PSR — 0.86 0.16 2.67 -3.01×10-14 1.06 0.75 1.34

RF — 0.92 0.12 3.60 -0.0003 1.00 1.00 1.00
PLS 10 0.76 0.21 2.07 1.10×10-14 1.21 0.57 1.73

aGM+, Gram positive bacteria; GM-, Gram negative bacteria; AMF, arbuscular myccorhizal fungi; MBC, microbial biomass C; MBN, microbial 
biomass N; bRF, random forest; PLS, partial least squares regression; PSR, penalized spline regression; cLF, PLS latent factor; dRMSEcv, root 
mean squared error of cross-validation; eRPD, residual prediction deviation.
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broad shoulder at 2137 nm was perhaps due to 
polysaccharides, such as cellulose (Chakraborty et 
al. 2013), which are part of the hard-to-decompose 
organic C. Conversely, the second-factor loading 
weights exhibited pronounced positive contributions 
for wave bands between 350 and ~1450 nm, possibly 
arising from the combined effect of electronic 
transitions, hydroxyls (930 nm, 3υ1; 700 nm, 4υ1; 
1400 nm, 2υ1), aromatics (1100 nm, 3υ1; 825 nm; 4υ1), 
carboxylic acids (1449 nm, 4υ1), amines (1000 nm, 
3υ1; 751 nm, 4υ1), and alkyl asymmetric-symmetric 
doublets (1138 nm, 3υ3; 1170 nm, 3υ1; 853 nm,4υ3; 
877 nm, 4υ1) (Viscarra Rossel and Beherens, 2010).
Notwithstanding the high dimensionality of the 
spectral data (215 spectral channels from 350 to 
2500 nm at 10-nm intervals), the first three linear 
discriminants explained up to 90% of the spectral 
variance for each variable. Separate pairwise linear 
discriminant plots (F1 vs.F2) indicating four classes 
of each parameter were used to distinguish soil ABS 
spectra and identify spectral similarities within a 
single class for each parameter (Fig. 6). Almost 
all plots exhibited ‘‘class-clustered’’ structure. Fig. 
6l confirmed that SOM classes were very well 
discriminated on the F1 axis which explained 
roughly three quarters (~72%) of the overall spectral 
variance. No obvious outlier among the samples 
was seen. Except for class 4 (Q4), the plots for total 
FAME (Fig. 6a), GM+ (Fig. 6b), actinomycetes (Fig. 
6d), total bacteria (Fig. 6e), total fungi (Fig. 6f), and 
MBN (Fig. 6k) showed some subtle content-wise 
separations (Q1 followed by Q2 and Q3) along F2 
axes. Nevertheless, some overlapping among higher 
classes was apparent. Besides, as light separation of 
first three classes of MBC was apparent along the 
F1 axis with some overlapping between Q3 and Q4 
(Fig. 6j). Interestingly, panels for total FAME, GM+, 
GM-, actinomycetes, total bacteria, saprophytic 
fungi, and fungi: bacteria showed separation of 
Q4 from the other three classes along F1. The LDA 
confusion matrix summarized the reclassification 
of the observations (Table 5), and allowed quick 
visualization of the % of misclassified observations. 
It is noteworthy that the LDA classification closely 
followed results of visual F1 vs. F2 plot inspections 
(Table 5). Indeed, for SOM class classification, LDA 
was 100% accurate. For total FAME, GM+, GM-, 
actinomycetes, total bacteria, total fungi, AMF, 
saprophytic fungi, fungi: bacteria, MBC, and MBN, 

LDA correctly classified all but 12,5, 8, 8, 8, 11, 4, 
23, 9, 10, and 9 samples, respectively. We obtained 
highest κ (linear weighting) for SOM (1). However, 
it should be noted that κ-coefficient of agreement 
values were specific to a given data distribution and 
thus cannot be directly compared across different 
datasets (Brown et al. 2006).

VisNIR DRS for soil microbial characterization

Our results strongly converged with previous 
studies in that GM+, actinomycetes, total bacteria, 
total fungi, MBC, MBN, and SOM are well correlated 
with soil reflectance (Chodak et al. 2007; Rinnan 
and Rinnan 2007; Zornoza et al. 2008).Even though 
fundamental vibration of organic molecules occurs 
in the mid-IR region (Williams and Norris, 1987), 
relatively muted absorption features of their 
overtones and combination bands arising from 
stretching and bending of N–H, C–H, and C=O 
groups present in soil biological fractions were 
identified by hyperspectral DRS in our study (Ben-
Dorand Banin, 1995). Further, the relatively higher 
light-penetrability arising from high extinction 
coefficients, less sample handling, and lesser 
specificity requirements gives an edge to VisNIR 
DRS over MIR instruments which have been 
mainly restricted to laboratory analysis (Reeves 
and Smith, 2009). However, one must use caution 
while interpreting soil VisNIR spectra, since not 
only was the spectrum (Fig. 5a) encumbered by the 
abundance or combination of overtone bands, but 
these bands were broad and perhaps overlapping. 
Often the location of the overtone bands was shifted 
slightly from the exact expected location since real 
molecules do not act totally harmonically (Bishop 
et al. 1994). Hence, while the target microbial 
group is present only in trivial quantity as in the 
cases of several soil biological fractions, assigning 
band specificity in soil VisNIR spectra poses stern 
difficulties and thus warrants multivariate modeling.
From LDA plots and classification results, it can be 
concluded that VisNIR sensing offers both the power 
of LDA as a means of discriminating the spectra of 
various classes of soil biological parameters and 
exhibiting a clustering tendency for content-wise 
similarity with great sensitivity. Overlapping among 
higher classes, Q2 and Q3 suggested that spectral 
diversity was relatively low in these two classes. 
A misclassification rate between 18.5 and 0%is an 
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encouraging and realistic estimate of the ability 
for VisNIR spectroscopy to classify soil biological 
parameters. Nonetheless, it is noteworthy that the 
lack of high-intensity spectral bands to some extent 
constrained the utility of qualitative analysis.

Potential of advanced chemometric modeling

Although infrared spectroscopy has been extensively 
developed in agriculture in the last 40 years, this 
research area has been experiencing a boom over 
the last 10 years. Johnson et al. (2003) reported 
the first bacterial groupings based on their soil 
reflectance properties, similar to bacterial intergenic 
transcribed spacer analysis. In our study, the 
robustness and stability of the total RF-FAME 
model corroborated the findings of Whittaker 
et al. (2003) who successfully measured and 
discriminated food borne bacterial mixtures of 

FAMEs using an attenuated total reflection (ATR)-
Fourier transform infrared (FTIR) spectroscopic 
and multivariate analysis. Our study, however, 
provided unique information of alternative RF and 
PSR models to improve the predictability of soil 
biological parameters. The better performance of 
PSR can be attributed to its stability and flexibility; 
more so than other parametric PLS approaches 
since the shape of the functional relationship 
between covariates and the dependent variable 
(soil biological parameter, in this study) was 
managed by the data (Marx and Eilers, 1999). The 
improvement of model generalization capability by 
implementing PSR followed the same trend reported 
elsewhere for other soil and compost properties 
(Chakraborty et al. 2012, 2014). Nonetheless, some 
of the underestimations of PLS, RF and PSR models 
could be due to the relative scarcity of observations 
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Fig. 6: Plots representing the observations on the first two linear discriminant analysis (LDA)factor axes (F1 and F2) for (a) total fatty 
acid methyl ester (FAME), (b) Gram positive bacteria (GM+), (c) Gram negative bacteria (GM), (d) actinomycetes, (e) total bacteria, 
(f) total fungi, (g) arbuscularmycorrhizal fungi (AMF), (h) saprophytic fungi, (i) fungi: bacteria, (j) microbial biomass carbon (MBC), 
(k) microbial biomass nitrogen (MBN), and (l) soil organic matter (SOM). The classes 1 (blue circle), 2 (green circle), 3 (brown circle), 
and 4 (black triangles) represent 1st quartile, 2nd quartile, 3rd quartile, and 4th quartile of each property, respectively
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at the higher ends of the property scales, as 
previously outlined by Brown et al. (2006). Our 
RF model results for MBC exceeded those from 
Palmborg and Nordgren (1993), Chang et al. (2001), 
and Zornoza et al. (2008). The latter produced an 
PLS RMSEcv value of 142 mg kg-1 while using 393 
air-dried soil samples and is thus unacceptable for 
mineral soils. Chang et al. (2001) reported moderate 
MBC model generalizing capability with an r2 of 
0.60 and an RPD of 1.10. Although, Couteaux et 
al. (2003) achieved excellent prediction for MBC 
(r2=0.95, RPD=4.42) while investigating 204 air-
dried forest Oh and A1 layers, their results were 
biased by the formation of subpopulations in the 
linear regression (Terhoeven-Urselmans et al. 2008). 
Our study also produced better predictabilities for 
GM+ (RPD=3.27) and GM- (RPD=3.10) than those of 
Zornoza et al. (2008). Furthermore, our prediction 
for MBN was better than that of Ludwig et al. (2002) 
who predicted MBN for 120 air-dried forest soils 
with a coefficient of determination of 0.7. The best 
predictability generated by RF can be supplemented 
by: (i) automatic identification of the best predictors, 
(ii) no need for data transformation or rescaling, 
(iii) resistance to outliers, (iv) more accurate results 
than a single tree, and most importantly (v) even 
growing a large number of RF trees does not create 
a risk of over-fitting (Breiman, 2001). Notably, on a 
sample containing several hundred thousand rows, 
a single RF tree can be built within a minute using 
a Pentium IV processor.

Sample processing and limitations

In this study one obvious question was: is it possible 
to directly analyze soil biological parameters in fresh 
samples by VisNIR DRS? This question was critical 
as we attempted to develop modeling alternatives 
which could ultimately lead to in situ measurements. 
Given that, VisNIR DRS can sense the changes in 
the matrix materials canned, particularly moisture 
(as it relates to O-H bonding and color) (Bishop et 
al. 1994; Zhu et al. 2010), bringing the soil samples 
to standard water content (field capacity) prior to 
scanning is critical for obtaining consistent results. 
In the present study, soil samples were collected 
during a drought and thus were almost air-dried. 
Despite that, it cannot be excluded that even 
in low soil moisture conditions, there was still 
remaining water adsorbed on the surface areas of 

clay minerals (e.g., hygroscopic water) and organic 
matter in equilibrium with atmospheric water 
vapor. Interestingly, even pre-treatment methods 
like quick-freezing and freeze-drying were unable 
to remove the water completely from the layer 
minerals of soil (Terhoeven-Urselmans et al. 2008). 
However, these minor variations perhaps did 
not cause much difference in the NIR spectra, as 
previously identified by Minasny et al. (2011). Our 
results, however, only showed the applicability of 
predictive models under low moisture conditions 
as previously demonstrated by other researchers 
(Rinnan and Rinnan, 2007; Zoronoza et al. 2008). 
Under laboratory controlled settings or sample 
collection following drought (like in the present 
study)and/or water logged conditions,soil can be 
scanned under uniform moisture content. However, 
maintaining homogeneous water content in the field 
during in-situ scanning is not easy. The RF-MBC 
model reported an RPD of 2.96 which is interesting 
since very few studies thus far using air-dried 
sample produced acceptable MBC predictability 
(Chodak et al. 2003; Zoronoza et al. 2008). Perhaps 
dry conditions are common occurrences in these 
soils and thus microbial communities have adapted 
to survive under drier conditions and their response 
to drought is different than that observed when 
moist soils are air dried. Despite that, establishing 
the best sample pretreatment (field-moist or air-
dried) was beyond the scope of this study and 
requires further investigations. Hence, the question 
of “how best to develop calibrations when moisture 
is present” is one of the big issues that remains to 
be properly answered about calibrations for soil 
biological properties.

Important wavelengths selected by 
multivariate algorithms

The present study could not identify high 
resemblance between the regression coefficients of 
the soil biological parameters and SOM. Indeed, 
the correlation matrix even suggested absence 
of any correlation between several variables and 
SOM (Table 3). While plotting the significant 
wavelengths of all three models, it was observed 
that calibrations were carried out independently, 
with diverse spectral regions implied in each 
property (Fig. 7). Whilst correlation between SOM 
and VisNIR absorbance data was developed in the 
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ranges 400-500 nm and 2300-2500 nm, other ranges 
were perceptible for other biological properties. 
Regions like ~2200-2500 nm were used in all PLS 
and RF and most PSR calibrations, suggesting that 
this region has deviations in functional groups 

bound to biological properties, which ultimately 
translated intovariations in the biological parameter 
concentrations. Note that, this range comes under the 
best NIR range of 1650-2500 nm for characterizing 
organic carbon compounds (Hummel et al. 2001; Lee 
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Fig. 7: Significant wavelengths used in the partial least squares (PLS) (black), random forest (RF) (blue), and penalized spline regression 
(PSR) (red) models for (a) total fatty acid methyl ester (FAME), (b) Gram positive bacteria (GM+), (c) gram negative bacteria (GM-), 
(d) actinomycetes, (e) total bacteria, (f) total fungi, (g) arbuscularmycorrhizal fungi (AMF), (h) saprophytic fungi, (i) fungi: bacteria, 
(j) microbial biomass carbon (MBC), (k) microbial biomass nitrogen (MBN), and (l) soil organic matter (SOM)
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et al. 2009; Morgan et al. 2009). Furthermore, while 
comparing the r2from simple linear regression of 
biological properties with SOM, and the values of 
r2 obtained from respective RF models with VisNIR 
spectra, the former were consistently lower than 
the latter, implying that RF’s accuracy cannot be 
explained by direct correlation with SOM (Table 
3). In fact, three variables (saprophytic fungi, 
fungi: bacteria, and MBC) produced an r2 of 0. 
Thus, the postulations of Cohen et al. (2005) and 
Rinnan and Rinnan (2007), that good predictions 
of soil biological parameters that are present in 
trivial quantities could be the consequence of high 
correlations with total soil organic matter quantity, 
may not be generalized.

Hypothetical sensor development

Improvement of models with variable selection is 
obvious and should be generalized. Considering 
that the model with fewer regressors involves 
fewer optical filters and detectors in a hypothetical 
sensor, a simpler model would always simplify 
the sensor’s configuration,reduce its weight, and 
make it more robust (Ge et al. 2007). The visual 
inspection of Fig. 7 revealed that the number of 
significant 10-nm averaged wavebands for PLS 
was far greater than RF and PSR counterparts. 
All these wavebands were almost consistently 
distributed along the entire VisNIR spectral range, 
implying that several optical filter-detector pairs 
with different central wavelengths and a uniform 
bandwidth of 10 nm would be needed. Further, 
an extra circuit block to combine these detectors’ 
output signals into four to ten synthetic signals 
representing the PLS latent factors would also be 
required (Table 4), unambiguously complicating 
the sensor development. Similar observations were 
made by Ge et al. (2007) while comparing the PLS 
based sensors with a DWT based hypothetical 
sensor. In the present study, the lesser significant 
RF regressors would open new opportunities for 
designing a low-cost VisNIR spectrometer from 
laboratory toon-the-go sensors, dedicated to soil 
biological measurement, which would drastically 
reduce measurement costs.

CONCLUSION
Summarily, we have demonstrated the premise of 
using a VisNIR–RF model as a viable alternative 

to the VisNIR–PLS model for rapid and low-cost 
estimation of various biological properties as an 
addition to the standard methods for soil biological 
analysis. The study was intended for testing the 
capability of VisNIR-RF or VisNIR-PSR viability 
instead of making a lab-grade predictive model. 
While the RF model remained superior to the other 
two models evaluated, it was not exhaustive and 
should be explored further under different soil and 
management conditions before drawing a stronger 
conclusion. The next step will be the validation of 
these models on independent samples. Auxiliary 
soil properties that can be estimated rapidly and 
easily (pH, electrical conductivity, etc.) may improve 
these predictive models when combined with the 
soil spectra. More improvement could be achieved 
by increasing sample numbers and mapping the 
regressors with further refined algorithms like 
DWT. Clearly, more fundamental investigations 
as to how total FAME and taxonomic biomarkers 
and other parameters influence optical properties 
are warranted. Our study showed good potential 
as an impetus toward future VisNIR–RF-based 
soil studies. Spectral scattering properties of 
soil are highly complex; real-time soil biological 
characterization is expected to be complex as 
well. Our future research will be directed toward 
developing a general model, so that exact spectral 
features linked with each soil biological and 
biochemical property can be identified and modeled 
as appropriate, reflecting different soil compositions.

ABBREVIATIONS
SOM: Soil organic matter; GM+: Gram positive 
bacteria; GM-: Gram negative bacteria; FAME: Fatty 
acid methyl ester; AMF: Arbuscularmycorrhizal 
fungi; MBC: Microbial biomass carbon; MBN: 
Microbial biomass nitrogen; PLS: Partial least 
squares regression; PSR: Penalized spline regression; 
RPD: Residual prediction deviation; RF: Random 
forest; VisNIRDRS: Visible near-infrared diffuse 
reflectance spectroscopy.
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